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Communication through chaotic modeling of languages

Murilo S. Baptista,1,2,* Epaminondas Rosa, Jr.,3 and Celso Grebogi1,2,4

1Institute for Plasma Research, University of Maryland, College Park, Maryland 20742
2Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742

3Nonlinear Dynamics Laboratory, Department of Physics, University of Miami, Coral Gables, Florida 33146
4Department of Mathematics, University of Maryland, College Park, Maryland 20742

~Received 2 March 1999!

We propose a communication technique that uses modeling of language in the encoding-decoding process of
message transmission. A temporal partition~time-delay coarse graining of the phase space based on the symbol
sequence statistics! is introduced with little if any intervention required for the targeting of the trajectory.
Message transmission is performed by means of codeword, i.e., specific targeting instructions are sent to the
receiver rather than the explicit message. This approach yields~i! error correction availability for transmission
in the presence of noise or dropouts,~ii ! transmission in a compressed format,~iii ! a high level of security
against undesirable detection, and~iv! language recognition.

PACS number~s!: 05.45.Vx, 05.45.Gg
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I. INTRODUCTION

Recent developments in communicating with chaos@1–4#
have produced a wealth of potential practical applicatio
including synchronization@5–7#, encoding-decoding tech
niques@1–4,8–11#, noise filtering@12#, and signal masking
and recovery@13,14#. This is so because chaotic system
have peculiar properties that make them natural candidate
play a significant role in nonlinear communication system
One of these properties, the sensitivity of the dynamics
small perturbations, is useful for targeting the trajectory
phase space to specific regions to which particular sym
have been assigned. This targeting feasibility provides c
otic systems with a natural type of dynamics to be used
communication. The symbol sequence to be followed by
chaotic trajectory corresponds then to the information to
transmitted@1–4,8,9,11,15#. Indeed, the ergodicity~or the
eventual visit of the trajectory to all partitions without an
targeting or control! of chaotic systems has been used
cently @14# in a chaotic communication scheme.

Symbolization of a chaotic trajectory can be useful
extracting relevant information about the system under c
sideration. Correlation function computing@16,17#, param-
eter estimation@18#, and data compression@19# are examples
of symbolic dynamics@20# application toward a better unde
standing of the system dynamics. Also, different signals g
erated by the same dynamics can be identified with the h
of the conditional entropy@21# obtained from the symbolic
dynamics of the chaotic process. Of course, the symb
sequence generated by a chaotic trajectory depends on
the phase space is partitioned. It also depends on the
delay interval~sampling rate for symbol sequence constru
tion!, which has been used to measure correlation leng
from given symbolic sequences@19#. Much emphasis has
been placed on the characterization of the complexity
symbol sequences based on patterns and transmission

*Permanent address: Instituto de Fı´sica, Universidade de Sa˜o
Paulo, C.P. 66318, 05315-970 Sa˜o Paulo, SP, Brazil.
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estimated from symbolic time series@22#.
In this work we present a language approach for a cha

communication system. The text message to be transmitte
generated by a chaotic process that respects the gramma
language. Symbols are assigned to judiciously chosen
gions of phase space, and the chaotic trajectory is contro
to visit these regions generating a symbol sequence that
responds to the desired message. The message itself i
transmitted. Rather, what is transmitted is a set of instr
tions, the codeword, that enables the receiver to decode
message. A temporal partition is introduced as a time-de
coarse graining@19# of the phase space. The phase spac
divided into a number of cells to which different symbols a
assigned@16,17#. As the chaotic trajectory visits these re
gions, symbols are generated, producing a symbol sequ
that corresponds to a message to be transmitted. The p
tions are chosen in such a way that the message is consi
with the grammar of a language. For the purpose of illust
tion we use an artificial language created as an approxi
tion to a real language in terms of statistical structure. W
assume a communication system consisting basically o
transmitter where the message is encoded, a communica
channel that carries the message from one place to ano
and the receiver where the message is decoded. Transm
and receiver have complete knowledge about the dynam
system being used. The procedure involves a minimum
information transmission, is secure against unwanted de
tion, and is robust against noise and dropouts.

This paper is organized as follows. In Sec. II we introdu
concepts and definitions related to languages, paying spe
attention to their statistical structure. In Sec. III, we sho
how this statistical structure is used in the construction of
dynamical model process. Section IV details how the co
munication system is built based on language modeling,
a technique for optimal transmission of information is pr
sented in Sec. V. In Sec. VI, we introduce a language rec
nition scheme and explain how this proposed communica
system is secure against undesired decoding. Section
proposes an error correcting code that is able to recove
formation when the transmission is corrupted by noise or
3590 © 2000 The American Physical Society
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due to dropouts. Our conclusions are presented in Sec. V

II. LANGUAGES

In general terms a language can be defined as any m
of communicating. More restrictedly, it can be viewed as
body of words and methods of combining words used a
understood by a considerable community. The alphabet
language is the finite setSof all permitted basic elements o
units Si . The information is contained in the messageM
which is a sequence of units organized according to the r
of the language, or grammar. We refer to the message
text because of its alphanumerical character. Suppose
instance, that the unitS1 corresponds to the ‘‘blank spac
unit.’’ In this case, a word is a sequence of units in betwe
two unitsS1 . An example of a two-word message would
M5S2S3S2S1S2S2S4S5 . Every unit along the message ca
be localized by attaching subscripts to the message u
such asMi . In this example,M15S2, M25S3, and so on.

One of the basic language rules is related to the way s
cessive units appear in a message. Each unit depends o
preceding units. A graphical visualization of the possib
transitions in a language composed of a five-unit alphabe
given by the transition diagram of Fig. 1~also known as a
state machine!. It describes the allowed pairs of adjace
units that can possibly appear in a message generated b
model of an artificial language.

Natural languages can be modeled by series of appr
mations where each approximation models a particular
tistical property of the language. The more statistical prop
ties are taken into account, the more approximations
considered, and the more reliable the model is@17#. In gen-
eral, a zeroth-order approximation model generates mess
with units independent of the preceding units: All units a
equally probable. A first-order approximation generates m
sages with units appearing independently of the preced
units, but units have a different frequencies of appeara
given by theunit frequency. A second-order approximatio
generates messages with units dependent on the prec
units, units have different unit frequencies, and pairs of u
appear with different frequencies given by thetransition fre-
quency. An nth-order approximation generates messa
with different frequencies, or probabilities of appearance
eachn-unit combination. More sophisticated model appro
mations may require, for example, that every word dep
on the preceding ones.

FIG. 1. Transition diagram for the artificial language. The
rows indicate the allowed unit transitions. Notice that some
quences of unit pairs are not allowed, as the sequences ‘‘11
‘‘14,’’ for example.
II.
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A message composed of units drawn from a finite seS
can be viewed as a Markov process that might produce
ergodicmessage. By ergodic we mean that all representa
~large enough! sequences of units have almost the same
tistical properties~statistical homogeneity!. Thus unit fre-
quencies, transition frequencies, and so on, approach defi
limits, as the length of the sequences approaches infin
Two conditions have to be met in order to construct a m
sage with ergodic characteristics. The first condition impo
that every unit has to be reachable from all other units
following some allowed path. The diagram of Fig. 1 sho
that this reachability is satisfied by following the paths ind
cated by the arrows. The second condition requires that
greatest common divisor of the lengths of closed circuits
the diagram of Fig. 1 be equal to one, a condition also s
isfied by this diagram.

The artificial language that we use here is simple, crea
by imposing statistical rules up to second-order approxim
tion. This simple language serves well the purpose of de
onstrating the implementation of our approach. We show t
it can be modeled by a chaotic mapping, and that the co
munication procedure allows secure transmission of inform
tion in a compressed format, error correction capability a
language recognition.

III. MODELING A LANGUAGE

A major characteristic of language is their inner organiz
tion. Languages produce messages with finite entropy@23#,
strongly suggesting that the generation of a message is du
a deterministic dynamical process. To model a language
means of a dynamical system, we look for a one-to-one c
respondence between a trajectory and a message creat
this model. The correspondence is found by partitioning
phase space where the trajectory evolves in a numbe
partitionsPi . Thereby, real number trajectory points are a
sociated with a finite set of symbols. With this procedure
phase space is mapped into the symbol space. As the tr
tory evolves, visiting the different symbol regions in whic
the phase space has been partitioned, a symbol sequen
generated. This symbol sequencej with componentsj i is
unique and characterizes the particular trajectory that ge
ated it. The correspondence between the language and
dynamical system boils down to the equivalence betw
messages and symbol sequences. There must exist a on
one correspondence between the symbols and alphabet
given by a functionW, such thatMi5W(j i). For simplicity
we setMi5j i for all i’s.

So, with a message generated by the selected lang
model, say up to second-order approximations as cho
here, we look for a system~i! with finite positive entropy
~typical of deterministic systems!, ~ii ! capable of producing
an ergodic symbol sequence, such that~iii ! the symbol se-
quence statistics is similar to the message statistics~transi-
tion diagram, unit frequency, and transition frequency!. In
other words, we are looking for a chaotic system. So far
the best of our knowledge, given a generic symbol seque
there is no general technique for finding a system capabl
generating such a sequence, or to define the real phase s
partitioning. We propose here a new approach for finding
proper partitioning of the state space of a generic cha
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system, such that the trajectory of this system is capabl
generating the given symbol sequence.

In order to demonstrate how our ideas can be imp
mented, we create a simple artificial language. It is based
an alphabet composed of five units represented by the
merals 1, 2, 3, 4, and 5, with allowed sequences and gro
ings governed by the transition diagram of Fig. 1. Notice t
some sequences of unit pairs are not allowed, such as
sequences 11 or 14, for example. Then we generate a
sage randomly choosing among the five units available,
carding sequences that are not allowed. If the random n
ber generator has a uniform distribution, the frequency
units is proportional to the number of arrows with the
pointing toward the corresponding unit. In natural languag
due to higher levels of organization when creating words
phrases, such a property is not verified. Thus, if we wan
mimic a natural language, we need a random number g
erator with a nonuniform distribution. For this purpose w
rescale the random numberh, defined to lie within the inter-
val @0,1#, by the functionf (h)5he1.02h . This interval is
divided in five equal size subintervals. The numbers that
into the first interval are associated with the unit 1, into t
second interval with unit 2, and so on. This rescaling ma
the distribution nonuniform and generates numbers wit
the interval@0,1#. For each rescaled random number, we g
erate one unit of our message if the character respects
rules imposed by the transition diagram. The message u
here contains 50 000 units.

The next step now is to model the artificial language t
can generate a 50 000-unit message. Some of its statis
properties are readily available, such as the number of u
and the transition diagram. Notice that when modeling
natural language this information must be obtained by
specting the message itself. Here we need to compute
frequencies of the unitsFi , and the transition frequencie
Fi , j , with i , j 51,2,3,4,5. TheFi ’s of our 50 000-unit mes-
sage are shown in Fig. 2. Correspondingly, the statistic
the symbol sequence is quantified by the symbol freque
~the frequency of appearance of theith symbol!, Gi , and the
symbol transition frequency~the frequency of appearance

FIG. 2. Unit frequencies of the language to be modeled by
chaotic dynamics system.
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the ij two-symbol sequence! Gi , j .
Next, we need a chaotic system. Our choice is

Xn115T~Xn![bXn~12Xn!, ~1!

where we useb54, which yields a chaotic trajectory in
@0,1#. The map~1! from now on will be referred to as the
transformationT.

Recall that in order to have a symbolic sequence~gener-
ated by a nonlinear system! equivalent to the message~the
unit sequence generated by the artificial language!, the sym-
bol frequencyGi , with which the chaotic trajectory visits th
partition Pi , must be close to the unit frequencyFi . Given
that a certain unitSi appears with a frequencyFi , the parti-
tion whose symbolic description is associated with the ch
acterSi , defined in the interval ]Xb

i ,Xt
i ], is found by vali-

dating

Fi5E
xb

i

xt
i

m~x!dx, ~2!

wherexb
i andxt

i are the bottom and the top of the partitio
Pi , and m(x) is the natural invariant measure of Eq.~1!.
This is shown in Fig. 3, obtained from a 50 000-long traje
tory. We numerically calculate Eq.~2! breaking it in a sum
computed over intervals of length 0.001. In this work,xb

1

50 and xt
551.0, corresponding to the valid range for E

~1!, and xt
i5xb

i 11. The five partitions whose locations ar
indicated in Fig. 3 are defined to lie in the interval
]xb

1,xt
1] 5]0.000,0.139], ]xb

2,xt
2] 5]0.139,0.530], ]xb

3,xt
3]

5]0.530,0.631], ]xb
4,xt

4] 5]0.631,0.700], ]xb
5,xt

5@
5#0.700,1.000@ . Defining these five partitions~see Fig. 3!,
the generated symbolic sequence of Eq.~1! for a typical
trajectory, has symbolsPi with the same frequency as th
frequency of the unitsSi ~see Fig. 2!. Thus,Fi5Gi ~in prac-
tice, numerically we findFi>Gi).

In our modeling process we now need to obtain a sy

e
FIG. 3. Natural invariant density of Eq.~1! computed through a

finite 50 000-sized trajectory. The limitsXb
i andXt

i of the partition
are also indicated in this figure. The invariant density is indep
dent of the initial condition chosen.
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bolic sequence with a symbolic transition frequencyGi , j
equal to the unit transition frequencyFi , j . This meansGi , j
5Fi , j ~in practice,Gi , j>Fi , j ). Even though the symbol se
quence of Eq.~1!, with partitions defined by Eq.~2!, follows
the same unit frequencies of the message, it is natura
expect that such a sequence does not respect the tran
diagram, and also that the symbol transition frequenciesGi , j
are typically very different from the unit transition freque
ciesFi , j . For example, a point in the partitionP1 does not
go to the partitionP3 under the application of Eq.~1!, as
required for the existing equivalence between the sym
sequence and the message. However, we know that ther
points inP1 that go toP3 after a certain number of iteration
different from one. Thus, in order to obtain a symbol s
quence consistent with the second level approximation of
artificial language, we define subpartitionsPi , j such that a
trajectory visiting them respects the transition diagram. B
sides, these subpartitions must be spatially localized s
that the trajectory through them generates a symbolic
quence for whichFi5Gi andFi , j5Gi , j .

Two conditions are in order at this point. First,Pi , j is
contained in the partitionPi , and

Tni , j~Pi , j !→Pj , ~3!

meaning that theni , j th iteration of the region of the subpa
tition Pi , j is mapped into the partitionPj . So, a point inPi , j
generates a trajectory under the application ofTni , j that rep-
resents the transitioni j . Second,

(
i

Fi , j5F j ; (
i

Gi , j5Gj , ~4!

meaning that the sum of all probabilities of transitions th
go to the unit~or symbol! j must be equal~or close to! the
unit ~or symbol! frequencyF j ~or Gj ). In practice, Eqs.~4!
are approximately satisfied. Then, the subpartitions are
tained by satisfying the following integral equation:

E m~Pi , j !dx5Fi , j , ~5!

which defines an interval with a probability of having a typ
cal trajectory falling within it equal to the transition probab
ity Fi , j . Even though different intervals in the attractor ob
condition~3!, we choose the subpartitionPi , j to be the inter-
val that belongs to the partitionPi .

To find the subpartitionPi , j , we compute the number o
iterationsni , j for which a large collection of points go from
the partitionPi to the partitionPj , following a trajectory
that is 50 000 long. Once this number of iterations is fou
we solve Eq.~5! numerically. We break the integral over
sum of terms that measure the probability density of Eq.~1!
for small intervals of size 0.005. Notice that the subpartitio
are defined in terms of number of iterationsni , j which ex-
plains their being named temporal. Two types of subpa
tions are obtained depending on how we choose the num
ni , j . One type is obtained by choosingni , j such that the
to
ion
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are
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t

b-

,

s
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collection of points is maximum. Another type is obtained
choosing the sameni , j for subpartitions located in the sam
partition, and thisni , j must be such that we still find in tha
trajectory a large collection of points going fromPi to Pj .
The subpartitions of the first type are composed of a union
a few closed intervals, while in the second type subpartitio
are formed by only one closed interval.

An important aspect of the subpartitions refers to the s
cessful recovering of the message at the receiver. This m
that two subpartitions belonging to the same partition sho
not overlap, that is,Pi , jùPi , j 85B. When obtaining the sub
partitions,Pi , j andPi , j 8 , for ni , jÞni , j 8 , we might find sub-
partitions that overlap. For example, in Fig. 4, a collection
points that are inP1 go to P2 in n1,251 iterations ~full
circles!, and a collection of points that are inP1, go toP3 in
n1,357 iterations~crosses!. The squares represent points th
go to eitherP2 to P3 . In such a case, the region that contai
the square shaped points is considered to be part of e
P1,3 or P1,2. If we restrict the choices for the values ofni , j

such thatni , j5ni , j 8 , we avoid the overlapping of subpart
tions. This can be seen more clearly by doing the followin
We know thatTni , j(Pi , j ) is mapped ontoPj . Now we want
to find the subpartitionPi , j 8 such thatTni , j 8(Pi , j 8) is mapped
onto Pj 8 . If ni , j5ni , j 8 and Pj 8ùPj5B, thus Pi , j 8ùPi , j
5B. Even though we worked with subpartitions in the sam
partition constructed by considering either different or eq
n’s, from now on we present results obtained by construct
subpartitions in the same partition but for whichni , j
5ni , j 8 . In this way, we avoid difficulties when communica
ing using a subpartition that is not connected.

These subpartitions provide the temporal characteristic
our partition. In fact, the phase space coarse graining is ba
on the statistical properties of a time-delay symbolic
quence, expected to be equivalent to the message. In
example here the subpartitions are given by the follow
intervals:

FIG. 4. Illustration of how points from the same partition can
to different partitions. A collection of points that are inP1 go toP2

in n1,251 iterations~full circles!, and a collection of points that ar
in P1, go toP3 in n1,357 iterations~crosses!. The squares represen
points that go to eitherP2 or P3 .
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P1,25@9.110959390093726E-003, 4.091426526520488E-002#,

P1,35@4.099086504290043E-002, 5.170528142116289E-002#,

P1,55@6.015706173586438E-002, 0.138938311406073#,

P2,15@0.405160149850449, 0.529882153383280#,

P2,25@0.301807100421237, 0.404999984676375#,

P2,55@0.139035266963177, 0.262229143759187#,
~6!P3,15@0.530069064408815, 0.547671906102650#,

P3,45@0.613756404263279, 0.622613674593072#,

P4,15@0.669097773904945, 0.699922529656951#,

P4,35@0.637208684765797, 0.643325562499964#,

P5,15@0.963978076071563, 0.999999995867970#,

P5,25@0.842835294422986, 0.963940926475781#,
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and the iteration numbers are

n1,25n1,35n1,552, n2,15n2,25n2,552,
~7!

n3,15n3,453, n4,15n4,354, n5,15n5,251.

The temporal partition has now been outlined in det
Our dynamical model for the artificial language is comple
except for the perturbations necessary to guide the trajec
along the partitions, in order to generate the correspond
symbol sequence. The next section takes care of this in
context of communication.

IV. COMMUNICATING WITH CHAOTIC DYNAMICS

As expected, the uncontrolled chaotic trajectory will n
necessarily follow a symbol sequence that is consistent w
the message. Also, our model does not include comp
structures of words beyond pairs of units. So we introdu
trajectory perturbations in order to make the due correcti
for generating the desired message. Sometimes it is not
venient to apply trajectory perturbations, and as is usu
done in chaos control, if the perturbation exceeds an up
bounded value, no perturbation is applied. Instead, to m
the trajectory to some target location, the chaotic system
iterated a certain number of times until, due to ergodicity,
trajectory visits the target location. The upper boundde rep-
resents the maximum allowed value of the perturbation to
applied to the trajectory. The message can then be gene
and transmitted from the transmitter to the receiver. Ho
ever, in our approach, instead of the message, we sen
structions that enable the receiver to generate the mess
The instructions, or codeword, may contain informati
about the trajectory perturbations~numbers thatPR! and/or
about the number of iterations applied to the dynamical s
tem~numbers thatPZ!. Importantly, both receiver and trans
mitter know the dynamical equations, the parameter valu
and the temporal partition. Another shared piece of inform
tion is the initial conditionX0 with which the codeword or
the encoding is realized. The result is secure and it invol
compressed information transmission.

In what follows we show how the transmitter encodes
message and how the receiver decodes it. For instance,
l.
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want to transmit the two-character messageM5M1M2

552, each component of the unit sequenceM is identified by
the subscriptt of Mt .

To encode the message thetransmitterenacts the follow-
ing strategy.

~1! Set the countert equal to 1 at the beginning of th
encoding process, and incremented by one each time the
cess comes back to this step.

~2! Make j equal to the character to be transmitted,j
5Mt ~for the first letter,j 55; for the second letter,j 52).

~3! Find the partitionPi where the pointXt21 is located.
~4! Compute the minimum distancee t21 betweenXt21

and the subpartitionPi , j . If Xt21PPi , j , thene t2150.0.
~5! If e t21<de , send the integer number 0 and the re

numbere t21 to the receiver, and go to step 7.
~6! If e t21.de ,

~a! iterate Xt21 under Eq.~1!; set Xt215T(Xt21)
and update an integer variableNt21 that registers the numbe
of times step 6~a! is called;

~b! search for the subpartitionPi 8, j (Pi 8 might be
different fromPi), such that the distancee t21 betweenXt21
andPi 8, j is minimal; if Xt21PPi 8, j thene t2150.0;

~c! if e t21<de , sendNt21 ande t21 to the receiver
and go to step 7;

~d! if e t21.de , return to step 6~a!.
~7! SetXt218 5Xt21 .
~8! Add the perturbation toXt218 : Xt219 5Xt218 1e t21 .
~9! Iterate the pointXt219 underT, ni , j times, obtaining

Xt5Tni , j(Xt219 ).
~10! Go back to step 1.
Suppose that the codeword is ‘‘N0 e0 N1 e1,’’ where

N0 andN1 are two integer numbers, ande0 ande1 are two
real numbers. This codeword is composed of two 2D vect
each vector with one component integer and another rea

To decode the message thereceiverdoes the following.
~1! Set the countert equal to 1 at the beginning of the de
coding process, and incremented by 1 each time the pro
comes back to this step.
~2! Get the integer codeword elementNt21 .
~3! Iterate the pointXt21 underT, Nt21 times. Thus,Xt218
5TNt21(Xt21).
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~4! Get the real codeword elemente t21 .
~5! Perform an orbit correction byXt219 5Xt218 1e t21 .

~6! Verify the subpartitionPi , j that the pointXt219 belongs
to.
~7! The numberj represents the first character,Mt5 j .
~8! Iterate Xt219 , under T, ni , j times, and obtainXt

5Tni , j(Xt219 ) ~which belongs toPj ).
~9! Go back to step 1.

An implementation of this encoding/decoding scheme
presented in Tables I and II. Table I shows the codeword
the message ‘‘1525,’’ and Table II shows how the recei
decodes the message. The receiver gets the initial cond
X0, which is located in the partitionP5, and transfers it to the
subpartition P31, by doing X095TN0(X0)1e0 . Then, the
point X1, which is then31th iteration of X09 under T, falls
within the partitionP1, which decodes for the unit 1. Nex
the pointX1 is iteratedN1 times underT, and then an orbit
correctione1 is applied to it. This transfers the point to th
subpartitionP25, which guides pointX19 to point X2, by do-
ing X25Tn25(X19), located in partitionP5, which decodes for
the unit 5. The remainder of the message is obtained
repeating this process.

One important feature of our modeling/encodin
decoding technique is that few trajectory alterations are n

TABLE I. Codeword for the message ‘‘1525.’’X0

50.700030753590814.

Codeword

N052
e050.0
N150
e150.0
N250
e250.0
N352
e351.66275911316449831023

TABLE II. Decoding of the message ‘‘1525.’’ The value of th
variables areX050.700030753590814,X0950.537733840231034
X15X185X1958.85545324873836E-2, X25X285X29
50.874472231429296, X350.439082191553455, X38
55.849430262269988E-2,X3956.015706173586438E-2.

Trajectory Xn belongs to Decoded message

X085TN0(X0)
X095X081e0 P31

X15Tn31(X0) ‘‘1’’
X185TN1(X1)
X195X11e1 P15

X25Tn15(X1) ‘‘5’’
X285TN2(X2)
X295X21e2 P52

X35Tn52(X2) ‘‘2’’
X385TN3(X3)
X395X31e3 P15

X45Tn15(X3) ‘‘5’’
s
r
r
on

y

/
c-

essary to guide the trajectory through the desired sym
sequence of the temporal partitions. These dynamic a
ations are produced either by applying a numberN of itera-
tions, different from 0, or by applying an orbit correctione,
also different from 0.0.

In Figs. 5 and 6, a codeword frequency analysis is sho
for two values ofde , de50.0 andde50.1. Notice that in
both cases, most of the codeword is composed of either
integers or null floating points. When not null, the element
the codeword is in most cases very small, which stron
indicates that the proposed modeling is reliable.

In Tables I and II we show the components of the cod
word that belong toR, and the trajectory with double
precision. The locations of the subpartitions are also defi
in double precision@see Eq.~6!#. This might lead the reade
to the impression that the method is numerically depend
This is not the case, as is demonstrated in the next sec

FIG. 5. Normalized number of appearances for each compo
of the codeword.de50.0. Notice that most of the codeword
composed of either null integers or null floating points.

FIG. 6. Normalized number of appearances for each compo
of the codeword.de50.1. Notice that most of the codeword
composed of either null integers or null floating points.
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where the components of the codeword that belong toR are
encoded in a set of integer numbers. The codeword com
nents represent dynamical alterations that the receiver m
apply to the dynamical system in order to target the traj
tory ~and recover the message!. Therefore, the receiver dy
namical trajectory is independent of the codeword float
number precision. The subpartitioning is known by the
ceiver and to the transmitter, and does not depend on
precision of the transmitted trajectory. Finally, receiver a
transmitter should be synchronized, which is possible eve
receiver and transmitter possess slightly different archi
tures@6,15#.

V. OPTIMIZING THE TRANSMISSION

The manner in which the codeword is transmitted depe
partially on the value ofde . We consider three cases:de
50.0, 0.0,de,0.2680, andde>0.2680. Forde50.0, no
perturbation is applied. So, alle are null and there is no nee
to transmit the real part of the codeword. The opposite h
pens forde>0.2680. In this case, it is always possible to fi
a perturbation in order to transfer the orbit to the desi
subpartition. As a result, all integers are null and there is
need to transmit the integer numbers. For 0.0,de,0.2680,
both the integer and the real elements of the codeword
transmitted. In addition, the transmission of each elem
takes no more thanD arbitrary units of time. Therefore, in
dependently of the value ofde , an important consequence o
the criterion used to construct the subpartitions is that, du
the encoding of the message, it is often the case that mo
from one pointX0 to the nextX1 does not require any per
turbation or any extra iterations. When this happens,
communication channel is free and certainly can be used
transmission of other messages. So, time division multip
ing may be another simple and attractive possibility in t
approach.

A schematic view of the three methods of transmitting
codewordj is as follows.

If de50.0, j iPZ

N50 channel is free duringD

NÞ0 sendN
. ~8!

If de>0.2680,j iPR

e50.0 channel is free duringD

eÞ0.0 sende
. ~9!

If 0.0,de,0.2680, $j i
0,j i

1%5$Ni ,e i%, with NiPZ and
e iPR.

N50
e50.0 channel is free during 2D

eÞ0 channel is free duringD and sende

NÞ0
e50.0 sendN and channel is free duringD

eÞ0.0 sendN ande

~10!

The information being sent is composed only of the non-n
codeword components. Even with this consideration,
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transmission can still be improved. Notice that due to
way the transmitter computes the perturbationsen @given by
steps 4 and 6~b! of Sec. IV#, no matter what the value ofen
is, the number of differenten’s that lead the trajectory to
some particular subpartition is finite. Moreover, the transm
sion of one codeword element that belongs toR demands 8
bytes~with double-precision real number!, making the code-
word larger than the message itself. This difficulty can
easily circumvented by simply applying the encoding pro
dure again, this time to the real components of the codew
This is done to some different set of numbers that we cho
to be the set of negative integersZ2, to differ from the set of
positive integer codeword components.

This second encoding does not depend on the value o
codeword component. It depends on the way it was obtain
More specifically, it depends on the subpartition where
perturbation sends the trajectory in. Table III shows the c
sen code for these perturbations. The code is chosen
that the codeword has a minimum number of different in
ger numbers. In the next section we show that this condit
enhances security and transmission efficiency. In orde
better evaluate the method of information transfer, we de
the compression rateR as the ratio between the amount
bytes needed to transmit the codeword and the amoun
bytes needed to transmit the message. The number of bB
needed to transfer one component of the codeword~message!
depends on how many different componentsH the codeword
~message! has. So,

B5Int @ log2~H !#11. ~11!

If the message is composed of five units, then one trans
ted unit is counted to contribute three bits@as given by Eq.
~11!# to the size of the full transmitted message. Similar
depending on the number of different components of
codeword, each component contributes with an amo
given by Eq.~11!. When the perturbation is not bounde
there are only three different numbers being transmitted:21,
22, and23. Therefore, 2 bits are required to transfer o
codeword component. We want to emphasize that the
codeword component does not contribute to the size of
full codeword. The best compression rate is obtained forde
>0.26800, which isR50.45827, meaning that our techniqu
successfully transmit information in a compressed format
addition to the security features discussed in the next sec
Figure 7 shows thatR,1.0 for most values ofde . The best
performance of this model happens when both compres
rate and perturbationd are minima. This is the case forde
'0.0015 andR50.6872 as seen in Fig. 7. There is n
change inR for de.0.2679 as expected, sincede50.2679 is

TABLE III. Code for en

en lead to code en lead to code

P12 21 P31 21
P13 22 P34 22
P15 23 P41 21
P21 21 P43 22
P22 22 P51 21
P25 23 P52 22
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the largest perturbation needed to move a point to some
partition. For this case it is easy to construct a codewo
Suppose for example thatX0PP1 and that the message
M5 ‘ ‘5 2 1.’ ’ To construct the codeword we look at Tabl
III, and find perturbations that make the pointXn9 go to the
following subpartitions:P15, P52, P21. Thus, j5 ‘ ‘ 23
22 21.’’

VI. LANGUAGE RECOGNITION AND SECURITY

The language approach for encoding-decoding techn
presented here can be applied to different types of langu
Each language, according to its own grammar, require
different class of temporal partition function. In terms
language recognition, our method can be implemented in
distinct ways. One is by just sending to the receiver the te
poral partition function as a header file. The other is by
cording on a data base specific partitions for different l
guages, and then picking the particular partition th
corresponds to the language used at the encoder. To pic
correct decoding temporal partition, the receiver has only
check if the decoded message is consistent with the dyn
ics of the language for which that particular temporal pa
tion is generated. If there is consistency, the temporal pa
tion under consideration has revealed the language tha
transmitter has used for encoding. Figure 7 shows that th
are intervals ofde for which R does not change. These inte
vals are caused by the natural tendency of the modelin
look for a minimum set of trajectories that encodes the p
ticular message when a large perturbation is allowed. In
case, the method often forces the trajectory to go to som
the subpartition edges, breaking down the random beha
of the chaotic trajectory. If we plot the evolution of the va
ableXn9 during the encoding whende50.2679, we see in Fig
8 that the trajectory is dense in some specific regions. Th
regions happen to be the edges of the subpartitions, ident

FIG. 7. Compression rate for the codeword with respect to
bound on the size of the perturbationde . R,1.0 for most values of
de . There is no change inR for de.0.2679 as expected, sincede

50.2679 is the largest perturbation needed to move a point to s
subpartition.
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by the thin vertical black lines. This occurs becauseen must
be minimal~see step 4, Sec. IV!, and when that happens on
might say that the secrecy of the codeword is not achiev
But, in fact, this is not a problem. For example, if the me
sage to be transmitted isM5 ‘ ‘3 1 3 1,’’ a suitable code-
word is j5 ‘ ‘ 22 2122 21’’ ( j i codes forMi). How-
ever, different messages such asM5 ‘ ‘4 1 3 1’’ and
M5 ‘ ‘2 1 3 1,’’ generate the same codewordj
5 ‘ ‘ 22 21 22 21.’’ So the codeword is noninvertible
which is a necessary condition for safe coding. The co
word is invertible only for the receiver that knows~a! the
correct initial condition,~b! the temporal partition,~c! the
dynamical system, and~d! the type of transmission deter
mined by the value ofde . These are the keys for decodin
the message. Notice that whenen50.0 no information is
transmitted during a time intervalD. Assuming that the
eavesdropper knows the encoding-decoding technique
has no access to the keys, the only plausible information t
is that during the time intervalD the trajectory needs no
correction. This is not of much help for the eavesdropp
For instance, ifj5 ‘ ‘ 22 0 22 21,’’ the number of mes-
sages that can produce this codeword increases to se
‘‘3 1 3 1,’’ ‘‘ 3 4 3 1,’’ ‘‘ 4 1 3 1,’’ ‘‘ 4 3 4 1,’’ ‘‘ 2 1 3 1,’’
‘‘2 2 2 1,’’ and ‘‘ 2 5 2 1.’’ Furthermore, secrecy is improve
when the perturbation is bounded. In order to demonst
the safety of the codeword, we make the very natural
sumption that the eavesdropper knows the language gr
mar, in particular, the transition diagram of Fig. 1. We al
assume that the dynamical process is known but not its
rameter. Under these circumstances, a small error in ei
the initial condition or in the system parameter or in t
temporal partition, precludes the decoding beyond a one-
message. For example, suppose that the temporal subp
tion locations and the system parameter are known, but
the initial condition. Let the codeword~with components be-
longing to Z1! be j5 ‘ ‘20 0.’ ’ We know that due to the
sensitive dependence on initial conditions, small errors a

e

e

FIG. 8. Evolution of the variableXn9 with no bound onde . The
black vertical bar represents the subpartitions given by Eq.~6!. The
trajectory is dense in the edges of the subpartitions, identified by
thin vertical black lines. This occurs becauseen must be minimal
~see step 4, Sec. IV!.
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plified exponentially after a few iterations of the chaotic pr
cess. To decode the message one needs to iterate the
condition 20 times under the process. Thus, for slightly d
ferent initial conditions and reasonable values of the larg
Lyapunov exponent, ‘‘20 0’’ can in fact be the code word f
any arbitrary one-unit message. For smallde , the trajectory
is no longer limited to being on the edges of the subpartiti
most of the time as shown in Fig. 9, where the evolution
Xn9 is plotted. That results in a codeword composed mostly
null components restoring the random behavior of the c
otic equation, thus improving the performance of the mod
ing procedure and security.

VII. ERROR CORRECTING CODE

Another relevant feature of our language-based comm
cation system is its capability of recovering corrupted pie
of the codeword. Several causes can contribute to los
information during the transmission, including noise a
transmission interruptions, or dropouts. Here we model no
and gaps in the transmission as total absence of signa
dropouts. As a matter of fact, dropouts can improve secu
in the system.

In Fig. 10, we show the partition transition diagram ind
cating how the chaotic trajectory visits different partitio
during the process of generating the message. The neg
numbers, as indicated by the arrows, are the codes of
perturbations that take the orbit through those partitions
the message to be transmitted isM5 ‘ ‘2 1 5,’ ’ we need
the trajectory to fall in the following partitions:P2, P1, and
P5 . Suppose that the initial condition is located inP5 ~or
any other partition that transfers orbits toP2, namely either
P1 or P2). With the help of Fig. 10, we construct a pa
oriented by the arrows connecting the partitionP5 ~where the
initial condition is! with the partitionsP2, P1, andP5 . The
path describes the trajectory and also indicates the codew
In Fig. 10, it occurs if the perturbationsj5 ‘ ‘ 22 21
23’’ are applied. This set of perturbations is in fact th

FIG. 9. Evolution of the variableXn9 , for de50.005. For small
de , the trajectory is no longer limited to the edges of the subpa
tions. That results in a codeword composed mostly of null com
nents restoring the random behavior of the chaotic equation,
improving the performance of the modeling procedure and secu
-
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codeword, and the length of the path is equal to the num
of arrows guiding it.

We usen to represent the length of the dropout. It is th
number of sequential components of the codeword that n
to be checked to guarantee that the receiver establish
robust decoding against dropouts. In the case of a codew
corrupted with dropouts of length 1, a number of conditio
must be satisfied to successfully recover the message.

~1! The code for anyen ~P R! that takes the trajectory to
some subpartition must be different from the one that ta
the trajectory to some other subpartition~so, Table III! can-
not be used.

~2! When en50.0, the transmitter has to send to the r
ceiver the same negative integer that encodes perturba
which take points to the subpartition containingXn8 .

~3! There must be no positive integer numbers in t
codeword—a condition that is satisfied if there is no bou
on the perturbation.

For large dropouts, complete reconstruction is possible if
codeword satisfies some extra conditions. Given that
codeword has a lengthn, the first codeword component,j1
~that is not part of the dropout!, encodes for a perturbatio
that puts the trajectory inPq (q51,2,3,4,5), and the las
codeword component,jn ~that is not part of the dropout!,
encodes for a perturbation that puts the trajectory inPw (w
51,2,3,4,5), and the dropout has sizen22. The following
additional conditions must be satisfied for a successful
construction of a dropout of size greater than or equal to

~4! The path with minimum length that connects the p
tition Pq with Pw must have a length equal ton.

~5! This path must be unique.

To understand why the first three conditions imply su
cessful recovery of dropout of length one, let us assume
tially that condition~1! is not satisfied, and that the code fo
the perturbations are given by Table III. Suppose that
message to be sent isM5 ‘ ‘2 1 5’’ ~with initial condition
in P5!, and the codewordj25$21%, which is the code for
M25 ‘ ‘1,’ ’ is not transmitted. In such a case, it is left to th
receiver to analyze all possible messages that could h
been transmitted. The receiver knows thatM15 ‘ ‘2,’ ’ and

i-
-
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y.

FIG. 10. Partition transition diagram, for perturbations encod
as shown in Table III, indicating how the chaotic trajectory vis
different partitions during the process of generating the messag
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has to figure out what the next two letters of the message
For that, it has to use what is already known, that is,j3
5$23%. It looks at the diagram of Fig. 10 and reconstru
all possible paths of trajectories that generates a valid m
sage. So, the receiver comes up with two choices for
message:M 85 ‘ ‘2 1 5’’ and M 95 ‘ ‘2 2 5.’ ’ These two
choices are coded byj85$22 21 23% and j95$22
22 23%. Comparing the message known by the recei
j35$23% with j38 and j39 , there is no way of discerning
whether the message transmitted wasM 8 or M 9. This prob-
lem arises because the transitions fromP2 to P5 and fromP1
to P5 happen through perturbations that are coded equa
Therefore, we conclude that there must be only one code
each transition shown in Fig. 10. Thus, condition~1! must be
satisfied. Hence, the perturbations are coded according to
negative numbers shown by the arrows in the transition
gram of Fig. 11. Looking at this diagram, and assuming t
the initial condition belongs toP5, the codeword for the
messageM5 ‘ ‘2 1 5’’ is j5$212 24 23%. If j2
5$24% is not sent to the receiver, looking at Fig. 11,
identifies that the only trajectory that generates a codew
with j35$23% is the one who leavesP2, and goes toP5,
passing throughP1 .

The reason for condition~2! is to make a distinction be
tween a dropout and a nullen . Otherwise the absence o
signal would be ambiguous.

Condition~3! is required because if a bound in the pertu
bation is imposed, each codeword component is a subs
the setZ2, composed of a pair of integer numbers, one se
positive integers,N1, and another set of negative intege
N2 . When decoding the message, the receiver knows
N2 has only one value for each partition transition cons
ered@condition ~1!#. However, the same does not apply f
N1 which can be any number. Therefore, ifN1 is part of the
codeword, the receiver faces the task of finding a num
with endless choices. Thus, condition~3! results in a code-
word composed of only numbers of the setN2 . If condition
~3! is not satisfied, and the codeword is composed of b
positive and negative integers, there is no way of correc
a transmission error. However, we still can identify erro
and be certain about the inaccuracy of the transmitted co
word. This is done by checking if the decoded message
spects the transition diagram in Fig. 1. When the deco

FIG. 11. Partition transition diagram, for perturbations encod
by respecting condition~6!.
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message is halted with respect to such transitions, there
error in the transmission.

By considering conditions~4! and ~5!, we determine that
3 is the maximum length for the dropout which still allow
message reconstruction, if the message is generated b
diagram of Fig. 1. When conditions~4! and ~5! are not sat-
isfied, the receiver is faced with more than one option for
possible message, and reconstruction becomes unfea
However, the receiver can make its choice based on the
tistics of the language and pick the option with a sequenc
letter frequency consistent with the transition frequen
This will considerably increase the chance of picking t
right option.

When the code obeys all five conditions, dropout reco
struction offers no difficulty. But if the first three condition
are satisfied, there is no codeword secrecy. If Fig. 11 is u
to encode the perturbations that belong toR, we are coding
the possible transitions of pairs of letters in the message.
eavesdropper can, after some work, find out which codew
component encodes for which pair of letters by simply ma
ing a frequency analysis in the codeword.

So, the method presented here has a tradeoff involv
secrecy, dropout reconstruction, and compression rate. W
secrecy and high compression rate are not fundamental
method guarantees that dropouts of at least length one ca
reconstructed. The compression rate is not the best perm
by the method, but still reaches a reasonable rate oR
54/3. In the case of dropout reconstruction being vital~com-
mon when the transmission is carried out only once as in
case of spatial probes and satellites!, and there is no need fo
codeword secrecy, the scheme proposed here works
Adding security requires compliance with condition~2!
which brings back lack of dropout reconstruction capabili
Outing of this loop is possible by redefining condition~2! as

~6! null perturbations that belong toR are coded into an
integer that we consider to be the null integer.

Condition ~6!, instead of condition~2!, makes the transi-
tions of Fig. 11 identifiable by either the negative numb
shown by the arrows, or by the new code for the null pert
bation. The presence of a null number in the codeword p
vents the eavesdropper from discovering the meaning
each codeword component by doing a frequency analysis
addition, it restores to the receiver, and only to the receiv
the capability of correcting errors due to dropouts during
transmission. However, depending on the value of the ini
condition, a dropout might not be allowed reconstructio
More specifically, if the initial condition produces a cod
word with a null component, and this component is part
the dropout, the receiver is not able to tell the dropout fro
the null element. This situation is taken care of by conditi
~1!.

The numerical procedure dropout reconstruction is re
ized by making a tree of possible paths through the partit
transition diagram, as shown in Fig. 12. The message to
sent is ‘‘1 5 2,’’ coded as ‘‘e0 e1 e2 .’ ’ These three real
numbers are then coded again by ‘‘29 23 212’’ @if condi-
tion ~2! is respected# or ‘‘0 23 212’’ @if condition ~6! is
respected instead of ~2!#, ~with e150.0, e2
53.832339823599391 E-2,e350.142804540832172!. If a
dropout occurs ande2 is not transmitted, we find its value b

d
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checking that there is only one path for which the value ofe2
corresponds to the value transmitted.

VIII. CONCLUSIONS

We propose a method of communicating using determ
istic dynamics based on modeling of language. Our pro
dure provides an efficient way of implementing a variety
different features required for a good communication sys

FIG. 12. Tree that allows the receiver to recover a gap in
codeword. The message to be sent is ‘‘1 5 2,’’ codes
‘‘ e0 e1 e2 .’ ’
tt

ev
s,

.

-
e-
f
m

such as security, compression, language recognition, an
ror correcting code. We create a temporal partition of
phase space of a dynamical system. This allows the stati
of the message, constructed from an artificial language, to
approximately equal to the symbolic sequence statistics
chaotic trajectory along this partition. This temporal partiti
is the cornerstone of the chaotic modeling of the artific
language. Equations other than Eq.~1! can be used to gen
erate the chaotic trajectory, provided that Eqs.~2! and~5! are
satisfied. Most of the time there is no need for external
tervention for the message generation, which makes our t
poral partition approach very attractive indeed.

We foresee the usage of our temporal partition as a w
of modeling other discrete processes that can be represe
by a symbol sequence. In more general terms, given
experimental symbol sequence, which could be originated
some unknown dynamical process, we can find an appr
mate model of the dynamics by wise partitioning of t
phase space with some functionT that generates the chaot
trajectory.
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